Skip to content

Micronutrients Deficiency Essay

Function:-Zinc is an essential nutrient required for the functioning of a large number of enzymes involved in the growth and reproduction of both plants and animals. It is required for the synthesis and functioning of chlorophyll, is involved in the plant hormone system and as a catalyst for the plant growth regulator, auxin.

Symptoms of Deficiency:-In plants, shortened internodes with excessive branching (resetting) of small, dark green deformed leaves. In cereals and grasses – chlorotic bands (yellow, red) may appear either across or within the veins. Stunted growth and necrosis of older leaves.

In animals, crusty growths, cracking of skin and loss of hair.

Copper (Cu)

Function:-Copper is an essential nutrient required for the functioning of a large number of enzymes involved in the growth and reproduction of both plants and animals. It is required for the synthesis and functioning of chlorophyll, is involved in the plant hormone system and acts as a catalyst for the plant growth regulator, auxin.

Symptoms of Deficiency:-Young leaves become dark green,twisted and deformed. Necrotic spots may appear. In grains and grasses,seed production is reduced and seed heads may be white and empty.

Deficiency in animals may include reduced milk production, infertility,skeletal defects and bone fragility,anaemia, cardiovascular diseases in cattle, rough coats or hair abnormalities e.g. “steely wool” in sheep, “swayback” in lambs and “illthrift” in cattle.

Molybdenum (Mo)

Function:-Molybdenum is an essential element for both plants and animals. In plants, Molybdenum is required for protein synthesis.It enhances both photosynthesis in plants and nitrogen fixation in legumes. In animals, Molybdenum is a constituent of several important enzymes, and plays a role in animal fertility, the estrus cycle, and mammary anticarcinogenesis.

Symptoms of Deficiency:-In plants, reduced and irregular leaf blade formation, interveinal mottling and chlorosis around the edges of older leaves. Necrotic spots at leaf tips and edges, smaller root nodules coloured white or green (not pink),growth inhibition in legumes.

Lower reproduction rates in animals.

Cobalt (Co)

Function:-Cobalt is a key constituent of Vitamin B12 and Propionate (themajor source of energy in ruminants). Cobalt enhances thenitrogen fixing ability of legumes and improves the efficiency of ruminal digestion.

Symptoms of Deficiency:-Small root nodules on legume species.

Uniformly pale green – yellow leaves,most severe on old leaves. Some crops may develop red leaves, stems or petioles. Stunted growth – tops may be less leafy. Grain or seed production may be retarded.

In animals, loss of appetite, body weight, (emaciation), anaemia, poor growth of heifers, weeping eyes,decreased milk production and white liver disease and salt stick.

Selenium (Se)

Function:-Selenium is an essential nutrient for animals, but not plants. It is involved in the production of antibodies and in the elimination of unwanted microorganisms and thus plays an important role in disease resistance. It prevents white muscle disease in livestock, exudative diathesis in poultry and liver necrosis in pigs.

Symptoms of Deficiency:-White muscle disease, ill-thrift, stiff lamb disease, infertility and embryonic mortality.

Magnesium (Mg)

Function:-Magnesium is an essential nutrient for the synthesis of chlorophyll. It is involved with the functioning of several enzymes associated with photosynthesis,respiration and reproduction.

Symptoms of Deficiency:-Interveinal chlorosis of older leaves.


(Compiled by Harsh saxena)

Back to Homepage

Micronutrient deficiency or dietary deficiency is not enough of one or more of the micronutrients required for optimal plant or animal health. In humans and other animals they include both vitamin deficiencies and mineral deficiencies,[1] whereas in plants the term refers to deficiencies of essential trace minerals.


Micronutrient deficiencies affect more than two billion people of all ages in both developing and industrialized countries. They are the cause of some diseases, exacerbate others and are recognized as having an important impact on worldwide health. Important micronutrients include iodine, iron, zinc, calcium, selenium, fluorine, and vitamins A, B6, B12, B1, B2, B3, and C.[2]

Micronutrient deficiencies are associated with 10% of all children's deaths,[3] and are therefore of special concern to those involved with child welfare. Deficiencies of essential vitamins or minerals such as Vitamin A, iron, and zinc may be caused by long-term shortages of nutritious food or by infections such as intestinal worms.[4] They may also be caused or exacerbated when illnesses (such as diarrhoea or malaria) cause rapid loss of nutrients through feces or vomit.[5]


In plants a micronutrient deficiency (or trace mineral deficiency) is a physiological plant disorder which occurs when a micronutrient is deficient in the soil in which a plant grows. Micronutrients are distinguished from macronutrients (nitrogen, phosphorus, sulfur, potassium, calcium and magnesium) by the relatively low quantities needed by the plant.[6]

A number of elements are known to be needed in these small amounts for proper plant growth and development.[7] Nutrient deficiencies in these areas can adversely affect plant growth and development. Some of the best known trace mineral deficiencies include: zinc deficiency, boron deficiency, iron deficiency, and manganese deficiency.

List of essential trace minerals for plants[8][edit]

  • Boron is believed to be involved in carbohydrate transport in plants; it also assists in metabolic regulation. Boron deficiency will often result in bud dieback.
  • Chlorine is necessary for osmosis and ionic balance; it also plays a role in photosynthesis.
  • Copper is a component of some enzymes and of vitamin A. Symptoms of copper deficiency include browning of leaf tips and chlorosis.
  • Iron is essential for chlorophyll synthesis, which is why an iron deficiency results in chlorosis.
  • Manganese activates some important enzymes involved in chlorophyll formation. Manganese deficient plants will develop chlorosis between the veins of its leaves. The availability of manganese is partially dependent on soil pH.
  • Molybdenum is essential to plant health. Molybdenum is used by plants to reduce nitrates into usable forms. Some plants use it for nitrogen fixation, thus it may need to be added to some soils before seeding legumes.
  • Nickel is essential for activation of urease, an enzyme involved with nitrogen metabolism that is required to process urea.
  • Zinc participates in chlorophyll formation, and also activates many enzymes. Symptoms of zinc deficiency include chlorosis and stunted growth.

See also[edit]


  1. ^Young, E.M. (2012). Food and development. Abingdon, Oxon: Routledge. p. 38. ISBN 9781135999414. 
  2. ^Tulchinsky, T.H. (2010). "Micronutrient deficiency conditions: global health issues". Public Health Reviews. 32: 243–255. Retrieved 10 April 2015. 
  3. ^Nutrition in the first 1,000 days: State of the world's mothers 2012(PDF). Westport, CT: Save the Children. 2012. p. 16. ISBN 1-888393-24-6. Archived from the original(PDF) on 23 May 2012. Retrieved 23 June 2016. 
  4. ^"Archived copy"(PDF). Archived from the original(PDF) on 2012-05-23. Retrieved 2013-04-05. 
  5. ^The Development of Concepts of Malnutrition, Journal of Nutrition, 132:2117S-2122S, July 1, 2002.
  6. ^*Mortvedt, John J. (31 August 1999). "Chapter 2: Bioavailability of Micronutrients". In Malcolm E. Sumner. Handbook of Soil Science. CRC Press. ISBN 978-0-8493-3136-7. 
  7. ^A Companion to Plant Physiology, Fourth Edition. Wade Berry, UCLA. Topic 5.1 Symptoms of Deficiency In Essential Minerals. Sinauer Publishing.
  8. ^Marschner, Petra, ed. (2012). Marschner's mineral nutrition of higher plants (3rd ed.). Amsterdam: Elsevier/Academic Press. p. 191. ISBN 9780123849052.